The Vapor-phase Reaction of Aluminium Trichloride with Oxygen in the Presence of Steam and Properties of the Aluminium Oxide Formed

Yuichi Shoji, Ryoko Matsuzaki, and Yuzo Saeki* Research Laboratory of Resources Utilization, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama 227 (Received July 3, 1981)

The reaction of gaseous AlCl₃ with oxygen containing 2-5 vol% H₂O in the temperature range of 200 to 1000 °C, and the thermal transitions of the Al₂O₃ formed under various conditions were examined. At 200 °C, only the reaction of gaseous AlCl₃ with H₂O occurs, regardless of the H₂O content in oxygen. Above about 400 °C, the reactions of gaseous AlCl₃ with both H₂O and oxygen occur, and all the AlCl₃ reacts at 1000 °C. The reaction with H₀O mainly occurs below about 900 °C, and the reaction with oxygen mainly occurs at 1000 °C. Regardless of the H₂O content in oxygen, the reaction product is amorphous Al₂O₃ below 600 °C, amorphous Al₂O₃ containing poorly crystallized γ-Al₂O₃ at 800 °C, γ-Al₂O₃ containing amorphous Al₂O₃ at 900 °C, and a mixture of γ-Al₂O₃ and δ-Al₂O₃ at 1000 °C. It was also observed that the Al₂O₃ formed below 800 °C included a chloride oxide of aluminium. On heating the amorphous Al₂O₃ formed by the reaction of gaseous AlCl₃ with oxygen containing *ca.* 700 °C ca. 800 °C ca. 1000 °C $\rightarrow \alpha$ transition occurs; on heating the γ -Al₂O₃ 2-5 vol% H₂O, the amorphous ca. 1000 °C ca. 900 °C formed, the γ α transition occurs.

To study the chemical process for preparing fine powders of aluminium oxide(Al₂O₃) from aluminium trichloride (AlCl₃) by the vapor-phase reaction, the present authors have examined the reactions of AlCl₃ with oxygen1) and with steam2) in the vapor phase, as well as the properties of the Al₂O₃ formed.

Cuer et al.3) have examined the oxidation of gaseous AlCl₃ in a hydrogen-oxygen flame. From the particle size of the Al₂O₃ formed, they estimated that during the oxidation of gaseous AlCl₃ with a gaseous mixture of oxygen and steam, the reaction with oxygen was predominant at higher temperatures (>2000 K) and that the reaction with steam mainly occurred at low temperature (1700 K). No report on the vapor-phase reaction of gaseous AlCl₃ with oxygen in the presence of steam is presently available.

In this paper, the reaction of gaseous AlCl₃ with oxygen containing 2-5 vol% steam in the temperature range of 200 to 1000 °C was examined. The thermal transitions of the Al₂O₃ formed under various conditions were also examined.

Experimental

The AlCl₃ used was prepared by the reaction of pure aluminium (Al: 99.99%) with chlorine at 400 °C.1)

A transparent quartz reaction tube (1000 mm length) with an inner concentric tube was used. Gaseous AlCl3 was formed by heating AlCl, placed in the inner tube at 150 °C, and was carried by a stream of argon (40 cm³/min) to the reaction zone (27 mm i.d. and 250 mm length) held at a specified temperature. In the meantime, a stream of oxygen (100 cm³/min) containing a specified amount of steam was introduced through a separate tube into the reaction zone. The mean flow-rate of the AlCl₃ was approximately 3.8 cm³ Al₂Cl₆ (g)/min. The reaction was allowed to proceed for 2 h.

The total amount of chlorine (Cl2) and hydrogen chloride (HCl) formed during the reaction was absorbed in a known amount of 0.1 M sodium hydroxide (NaOH) solution,† and was determined by neutralization titration of the excess NaOH. The Cl₂ formed by the reaction was absorbed in a potassium iodide solution and was determined by iodometry.

The amount of HCl formed was determined as the difference between the total amount of Cl2 and HCl and the amount of Cl₂.

The unreacted AlCl₃, which was deposited outside the reaction zone together with the reaction product, was separated by heating the mixture in an argon stream at 250 °C. The AlCl₃ adsorbed on Al₂O₃ formed was separated by washing the Al₂O₃ with ethanol at the boiling point with stirring.1)

X-Ray analysis of the solid product was performed with an X-ray powder diffractometer equipped with a proportional counter, using Ni filtered Cu radiation.

Throughout this work, AlCl₃ and the reaction products were handled in an argon atmosphere or in vacuo to prevent any contamination with moisture in the air.

Results and Discussion

Reaction of Gaseous Aluminium Trichloride with Oxygen

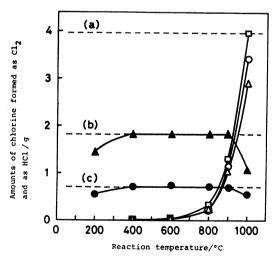


Fig. 1. Amounts of chlorine formed as Cl₂ and as HCl by the reaction of gaseous AlCl₃ with oxygen containing H₂O at various temperatures.

 O_2+2 vol% $H_2O:$ — — as Cl_2 , — — as HCl. O_2+5 vol% $H_2O:$ — — as Cl_2 , — — as HCl. $O_2:$ — as Cl₂.

 $¹ M = 1 \text{ mol dm}^{-3}$.

in the Presence of Steam. Amounts of Cl₂ and HCl formed by the reaction of gaseous AlCl₃ with oxygen containing 2 or 5 vol% steam (H2O) at various temperatures were examined. A reaction temperature above 200 °C was employed, because gaseous AlCl₃ was generated by heating AlCl₃ at 150 °C. The amounts of chlorine formed as Cl2 and as HCl at various temperatures are shown in Fig. 1. For comparison, the amounts of Cl₂ formed by the reaction of gaseous AlCl₃ with oxygen at various temperatures, which have been reported in the previous paper,1) are also shown in Fig. 1. The broken line (a) in Fig. 1 shows the calculated value of the amount of chlorine formed as Cl2 or as HCl, based on the assumption that all the AlCl₃ introduced reacts with oxygen or H₂O to form Cl₂ or HCl. The broken lines (b) and (c) show the calculated values of chlorine formed as HCl, based on the assumption that all the H₂O which is contained in a stream of oxygen containing 5 or 2 vol% H₂O reacts with gaseous AlCl₃ to form HCl.

These results indicated that, at 200 °C, only the reaction of gaseous AlCl₃ with H₂O occurred, regardless of the H₂O content in oxygen. At 400—900 °C, all the H₂O introduced reacted with AlCl₃ and the reaction of gaseous AlCl₃ with oxygen also occurred. amount of Cl₂ formed by the reaction with oxygen increased markedly with the increase in the reaction temperature above 800 °C. At 1000 °C, total amounts of chlorine formed as Cl2 and as HCl agreed with the value shown by the broken line (a), regardless of the H₂O content in oxygen. This fact indicated that the percentage of the reacted AlCl₃ reached 100 at 1000 °C. It was also found that a part of the H₂O introduced did not react with gaseous AlCl₃ at 1000 °C. result indicates that, during the vapor-phase reaction of AlCl₃ with oxygen in the presence of H₂O, the reaction of gaseous AlCl₃ with H₂O mainly occurs below about 900 °C and that the reaction with oxygen mainly occurs at 1000 °C.

The products formed by the reaction of gaseous AlCl₃ with oxygen containing 2 and 5 vol% H₂O at temperatures above 400 °C were examined by similar experiments^{1,2}) through X-ray analysis, thermogravimetry, and differential thermal analysis; these were employed in the examination of the reaction products of gaseous AlCl₃ with oxygen and with H₂O.

The results for the products formed by the reaction with oxygen containing 5 vol% H2O show that the reaction product is amorphous Al₂O₃ at 400-600 °C, amorphous Al₂O₃ containing poorly crystallized γ-Al₂O₃ at 800 °C, γ-Al₂O₃ containing amorphous Al₂O₃ at 900 °C, and a mixture of γ -Al₂O₃ and δ -Al₂O₃ at 1000 °C. It was also observed that the Al₂O₃ formed below 800 °C included the chloride oxide of aluminium, which was found to be included in the Al₂O₃ formed by the reaction between gaseous AlCl₃ and H₂O below 900 °C.2) On heating the chloride oxide, it decomposes to γ-Al₂O₃ with the evolution of gaseous AlCl₃ in the vicinity of 830 °C.2) The weight losses due to the decomposition of the chloride oxide contained in the Al₂O₃ formed at 400, 600, and 800 °C were 8, 3, and 2 %, respectively.

The modification of the Al_2O_3 formed by the reaction of gaseous $AlCl_3$ with oxygen containing 2 vol% H_2O at each temperature was found to be the same as that formed by the reaction with oxygen containing 5 vol% H_2O , which was described above. Also, the Al_2O_3 formed below 800 °C included the chloride oxide mentioned above.

The modification of the Al_2O_3 formed by the reaction with oxygen containing 2—5 vol% H_2O at each temperature was found to be the same as that of the Al_2O_3 formed by the reaction with H_2O ,²) except that the Al_2O_3 formed by the reaction with H_2O at $1000\,^{\circ}\mathrm{C}$ was γ - Al_2O_3 . The Al_2O_3 formed by the reaction of gaseous $AlCl_3$ with oxygen is amorphous Al_2O_3 at $800\,^{\circ}\mathrm{C}$, γ - Al_2O_3 containing amorphous Al_2O_3 at $900\,^{\circ}\mathrm{C}$, and γ - Al_2O_3 at $1000\,^{\circ}\mathrm{C}$. While, the Al_2O_3 formed by the reaction with oxygen containing 2—5 vol% H_2O is amorphous Al_2O_3 containing poorly crystallized γ - Al_2O_3 at $800\,^{\circ}\mathrm{C}$, and a mixture of γ - Al_2O_3 and δ - Al_2O_3 at $1000\,^{\circ}\mathrm{C}$, as described above.

The products formed by the reaction of gaseous AlCl₃ with oxygen containing 2—5 vol% H₂O at various temperatures were examined by electron microscopy.

The Al₂O₃ formed by the reaction with oxygen is relatively uniform, ultrafine powders with the particle diameters of the order of 1/100 μm.¹⁾ The range of the particle sizes of the Al₂O₃ formed by the reaction with oxygen containing 5 vol% H₂O was observed to be wide, as was that of the Al₂O₃ formed by the reaction with H₂O.²⁾ The Al₂O₃ formed by the reaction with oxygen containing 2 vol% H₂O at 800 and 900 °C were relatively uniform, ultrafine powders, as seen from Figs. 2 (a) and (b).

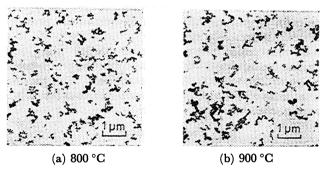


Fig. 2. Electron micrographs of the Al₂O₃ formed by the reaction of gaseous AlCl₃ with oxygen containing 2 vol% H₂O at 800 and 900 °C.

Thermal Transition of the Aluminium Oxide Formed. The thermal transitions of the Al_2O_3 formed under various conditions were examined. The samples obtained by heating the Al_2O_3 at a specified temperature for 2 h both in an argon atmosphere and in the air were examined by X-ray analysis.

The results for the Al₂O₃ formed by the reaction with oxygen containing 5 vol% H₂O are shown in Table 1.

The experimental results show that on heating the amorphous Al₂O₃ formed at 400 and 600 °C both in an argon atmosphere and in the air, the amorphous ca.700 °C ca.800 °C ca.1000 °C

 $\longrightarrow \chi \longrightarrow \kappa \longrightarrow \alpha$ transition occurs, re-

Table 1. Thermal transitions of Al_2O_3 formed by the reaction of gaseous $AlCl_3$ with oxygen containing 5 vol% H_2O at various temperatures

	Formation temperature of Al ₂ O ₃ and heating atmosphere							
Heating temp/°C	400 °C		600 °C		800 °C		900 °C	1000 °C
	In argon	In air	In argon	In air	In argon	In air	In argon and air	In argon and air
600	Amorphous		Amorphous		Amorphous		γ	γ, δ
700	χ	χ	χ	χ	χ	χ	γ, χ	γ, δ
800	χ, κ, γ	χ, κ	χ, κ, γ	χ, κ	χ, κ, γ	χ, κ, γ	γ, Χ, κ	γ, δ
900	χ, κ, γ	χ, κ	χ, κ, γ	χ, κ	χ, κ, γ, δ	$\chi, \kappa, \gamma, \delta$	γ, δ, κ	γ , δ
1000	$\kappa,\delta>\alpha$	κ, α	$\kappa, \delta > \alpha$	κ, α	$\kappa, \delta > \theta, \alpha$		δ, θ, α	δ , $\theta > \alpha$
1100	α	α	ά	α	$\alpha > \theta, \delta$	$\alpha > \theta, \delta$	$\alpha > \theta, \delta$	δ, θ, α
1200					α	α	α	α , θ
1300	-	_				<u></u>		$\alpha > \theta$

 $Amorphous = amorphous \ Al_2O_3, \ \chi = \chi - Al_2O_3, \ ^{4,5)} \ \kappa = \kappa - Al_2O_3, \ ^{4,6)} \ \alpha = \alpha - Al_2O_3, \ ^{7)} \ \gamma = \gamma - Al_2O_3, \ ^{4,8)} \ \delta = \delta - Al_2O_3, \ ^{4,9)} \ \theta = \theta - Al_2O_3, \ ^{10)} \ \theta = \theta - Al_2O_3, \ ^{10} \ \theta = \theta - Al_2O_3, \$

gardless of the heating atmosphere. The γ -Al₂O₃ observed in the samples obtained after heating the amorphous Al₂O₃ at 800 and 900 °C in an argon atmosphere is due to the decomposition of the chloride oxide which is included in the amorphous Al₂O₃, and the δ -Al₂O₃ observed at 1000 °C is due to the thermal transition of the γ -Al₂O₃ formed.²⁾ The samples obtained after heating the amorphous Al₂O₃ in the air give neither diffraction line corresponding to γ -Al₂O₃ nor corresponding to δ -Al₂O₃, because the chloride oxide is oxidized in the air to amorphous Al₂O₃ which transforms in the same manner as the amorphous Al₂O₃ formed from gaseous AlCl₃.²⁾

On heating the amorphous Al_2O_3 containing poorly crystallized γ - Al_2O_3 , formed at 800 °C, both the amorphous $\rightarrow \chi \rightarrow \kappa \rightarrow \alpha$ and $\gamma \rightarrow \delta \rightarrow \theta \rightarrow \alpha$ transitions occur, as is expected from the above results.

The experimental results for the Al₂O₃ formed by the

Table 2. Thermal transitions of Al_2O_3 formed by the reaction of gaseous $AlCl_3$ with oxygen containing 2 vol% H_2O at 900 and 1000 °C

Heating	Formation temperature of Al ₂ O ₃ and heating atmosphere				
temp/°Č	900 °C In argon and air	1000 °C In argon and air			
600	γ	γ, δ			
700	γ, χ	γ, δ			
800	γ, χ, κ	γ, δ			
900	γ, δ, χ, κ	γ, δ			
1000	δ , θ , α , κ	$\delta > \theta$, α			
1100	δ , θ , α	$\delta, \theta > \alpha$			
1200	$\alpha > \theta$	α , $\hat{\theta}$			
1300	$\alpha > \theta$	α , θ			

reaction with oxygen containing 2 vol% H_2O at temperatures below 800 °C were similar to those for the Al_2O_3 formed by the reaction with oxygen containing 5 vol% H_2O . The results for the γ - Al_2O_3 containing amorphous Al_2O_3 , formed at 900 °C, and for the mixture of γ - Al_2O_3 and δ - Al_2O_3 , formed at 1000 °C, are shown in Table 2.

From these results, the thermal transitions of amorphous Al_2O_3 and of γ - Al_2O_3 , formed by the reaction of gaseous AlCl₃ with oxygen containing 2 vol% H₂O, are found to be the same as those of the Al₂O₃ formed by the reaction with oxygen containing 5 vol% H₂O. In more details, the sample obtained after heating at 1300 °C the γ-Al₂O₃ containing amorphous Al₂O₃, formed by the reaction with oxygen containing 2 vol% H₂O at 900 °C, was found to be a mixture of α-Al₂O₃ and θ-Al₂O₃ (Table 2). The sample obtained after heating at 1200 °C the γ -Al₂O₃ containing amorphous Al₂O₃, formed by the reaction with oxygen containing 5 vol% H₂O at 900 °C, gave diffraction lines corresponding to α -Al₂O₃ alone (Table 1). These results can be well understood, considering the thermal transitions of γ -Al₂O₃ containing amorphous Al₂O₃, formed by the reactions of gaseous AlCl₃ with oxygen¹⁾ and H₂O²⁾ at 900 °C.

These experimental results show that on heating the amorphous Al_2O_3 formed by the reaction of gaseous $AlCl_3$ with oxygen containing 2—5 vol% H_2O , the amorphous $\xrightarrow{ca.700\,^{\circ}\text{C}} \chi \xrightarrow{ca.800\,^{\circ}\text{C}} \kappa \xrightarrow{ca.1000\,^{\circ}\text{C}} \chi \xrightarrow{ca.900\,^{\circ}\text{C}} \chi \xrightarrow{ca.900\,^{\circ}\text{C}} \chi \xrightarrow{ca.1000\,^{\circ}\text{C}} \chi \xrightarrow{ca.1000$

The thermal transition of the amorphous Al_2O_3 is the same as that of the amorphous Al_2O_3 formed by the reactions with oxygen¹⁾ and with $H_2O^{.2)}$ The transition temperatures of $\gamma \rightarrow \delta$, $\delta \rightarrow \theta$, and $\theta \rightarrow \alpha$ on heating the γ -Al₂O₃ are approximately 100 °C lower than those of the γ -Al₂O₃ formed by the reaction with oxygen¹⁾ and are the same as those of the γ -Al₂O₃ formed by the reaction with $H_2O^{.2)}$

References

1) Y. Shoji, K. Tatsumi, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Jpn., 53, 269 (1980).

- 2) Y. Shoji, R. Matsuzaki, and Y. Saeki, Bull. Chem. Soc. Inn., 54, 2652 (1981)
- Jpn., **54**, 2652 (1981).
 3) J. P. Cuer, J. Elston, and S. J. Teichner, Bull. Soc. Chim. Fr., **1961**, 81, 89.
- 4) K. Funaki and Y. Shimizu, Denki Kagaku, 28, 358 (1960).
- 5) JCPDS, Powder Diffraction File, 13-373.
- 6) ASTM, X-Ray Powder Data File, 4-878.
- 7) ASTM, Powder Diffraction File, 10-173.
- 8) JCPDS, Powder Diffraction Data Card, 29-63.
- 9) JCPDS, Powder Diffraction File, 16-394.
- 10) JCPDS, Powder Diffraction File, 11-517.